Fréchet quotients of spaces of real-analytic functions
نویسندگان
چکیده
منابع مشابه
Composition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملHadamard multipliers on spaces of real analytic functions
We consider multipliers on spaces of real analytic functions of one variable, i.e., maps for which monomials are eigenvectors. We characterize sequences of complex numbers which are sequences of eigenvalues for some multiplier. We characterize invertible multipliers, in particular, we find which Euler differential operators of infinite order have global analytic solutions on the real line. We p...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولcomposition operators acting on weighted hilbert spaces of analytic functions
in this paper, we considered composition operators on weighted hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a hilbert-schmidt characterization and characterizes the membership in schatten-class for these operators. also, closed range composition operators are investigated.
متن کاملIntegration in Hermite spaces of analytic functions
We study integration in a class of Hilbert spaces of analytic functions defined on the Rs. The functions are characterized by the property that their Hermite coefficients decay exponentially fast. We use Gauss-Hermite integration rules and show that the errors of our algorithms decay exponentially fast. Furthermore, we study tractability in terms of s and log ε−1 and give necessary and sufficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2003
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm159-2-5